OBJECTIVES

After studying this chapter, the
student should;

1. be familiar with and
understand the properties of
the electronic states of the
hydrogen molecule ion;

| 2. be able to construct

approximate wave functions
and electron configurations
or homonuclear diatomic
molecules;

3. be able to use general
properties of molecular
orbitals, including criteria for
formation of good bonding
orbitals, to predict the
qualitative properties of
electronic states of
heteronuclear diatomic
molecules;

4. be able to describe

qualitatively the bonding in

a fairly small polyatomic
molecule, including bond
angles, bond polarities, and
the dipole moment of the
molecule, using the criteria for
formation of good bonding
orbitals;

5. be able to describe
qualitatively the bonding in
fairly small polyatomic
molecule, using the valence
bond method;

| 6. be able to assign molecules to

point groups and use some of
the elementary applications of
group theory to molecular
wave functions;

| 7. be familiar with some of the

semi-empirical molecular
orbital calculation schemes
and be able to use
commercially available
computer programs to carry
out these calculations.

The Electronic States of Molecules

PRINCIPAL FACTS AND IDEAS

10.

. In the Born-Oppenheimer approximation, the nuclei are assumed to be

stationary when the electronic states are studied.

. The Schrodinger equation for the hydrogen molecule ion, H,™, can be

solved in the Born—Oppenheimer approximation without further
approximations.

. Molecular orbitals can be represented approximately as linear combinations

of atomic orbitals (LCAO-MOs).

The electronic states of homonuclear diatomic molecules can be described
with a common set of LCAO-MOs.

The valence bond method is an alternative to the molecular orbital method.

Heteronuclear diatomic molecules are described with molecular orbitals
that differ from those of homonuclear diatomic molecules.

Qualitative descriptions of the electronic states of molecules can be
obtained by using general criteria for forming good bonding LCAO
molecular orbitals.

The electronic structure of polyatomic molecules can be described with
LCAO molecular orbitals.

. Group theory can be used to obtain useful information about molecular

orbitals and wave functions.

Various semi-empirical and ab initio techniques exist for carrying out
molecular orbital calculations.
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18.1

Ego

H

Figure 18.1 Born—Oppenheimer
Energy as a Function of Internuclear
Distance for a Diatomic Molecule
(Schematic).  This energy is the
total energy of the molecule in the
Born—Oppenheimer approximation. It
consists of the electronic energy (kinetic
plus potential), plus the energy of repul-
sion of the nuclei for each other.

Nucleus A—-4¢

Electron

¢-—Nucleus B

Figure 18.2 The Hydrogen Molecule
lon (H,) System. This system is the
simplest molecule, having only one elec-
tron. It is the only molecule for which the
Schrédinger equation can be solved in
the Born—Oppenheimer approximation
without any additional appproximations.

The Born—Oppenheimer Approximation.
The Hydrogen Molecule lon

In a two-particle system such as the hydrogen atom, the Schrédinger equation can be
solved in closed form (with solutions that can be represented by formulas). This is done
as in Chapter 16 by separating the Schrédinger equation for two particles into one
equation for the motion of the center of mass and another for the relative motion. For
atoms with more than one electron we had to resort to approximations, including the
assumption that in studying the electronic motion in atoms the nucleus was stationary.

Our study of the electronic motion in molecules is based on a similar assumption, the
Born-Oppenheimer approximation,’ which is the assumption that the nuclei are
stationary when the electronic motion is studied. Fixed bond distances and bond angles
are assumed and a Hamiltonian operator is written for electronic motion only. This is a
good approximation, since electrons move so rapidly that they adapt to a new electronic
wave function as soon as the nuclei move to a new location or conformation.

The energy of the molecule with stationary nuclei is called the Born-Oppenheimer
energy. Figure 18.1 shows schematically the ground-state Born-Oppenheimer energy of
a diatomic molecule, which depends only on the internuclear distance, R. With
polyatomic molecules, the Born—Oppenheimer energy depends on all of the inter-
nuclear distances and bond angles. Since the Born-Oppenheimer energy is a function
of nuclear positions but not their velocities, it acts as a potential energy for molecular
vibrations. Molecular rotations are usually studied with the assumption that the
molecule is locked in the conformation of lowest energy (the equilibrium conforma-
tion). To a good approximation, the kinetic energy of nuclear motion can be added to
the Born-Oppenheimer energy to obtain the total energy of the molecule. We return to
study of the nuclear motions in Chapter 19.

The Schrédinger Equation for the Hydrogen Molecule lon

The simplest molecular system is the hydrogen molecule ion, H,™, consisting of two
nuclei and a single electron, as depicted in Figure 18.2. We apply the Born-
Oppenheimer approximation, assuming that the nuclei are stationary with one nucleus
at position A on the z axis and the other nucleus at position B on the z axis and with the
origin of coordinates midway between the nuclei. The Born-Oppenheimer Hamiltonian
operator for the hydrogen molecule ion is

- A, 22 /11 ]
H=-+V+—(--——— 18.1-1
2m +4n£0( ) ( J

where V? is the Laplacian operator for the electron’s coordinates, m is the electron mass.
R is the internuclear distance, r4 is the distance from the electron to the nucleus at
pasition A, and ry is the distance from the electron to the nucleus at position B. There
are no kinetic energy terms for the nuclei because they are assumed to be fixed. Since

"Max Born and J. Robert Oppenheimer, Ann. Phys., 84, 457 (1927).
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the internuclear distance R is constant in the Born—Oppenheimer approximation, the
potential energy ¥, of internuclear repulsion is a constant:

2

&
= = 18.1-2
FmegR ¥ = constant ( )
We exclude ¥, from the electronic energy and write

H=Hy+7,, (18.1-3)

- A . 11
- AL, YOl O A (18.1-4)

2m dmeg \ ra TR

The electronic Schrédinger equation is

By = Eqtha (18.1-5)

where E, is the electronic energy eigenvalue. A constant adced to a Hamiltonian
operator does not change the energy eigenfunctions and results in adding that constant
to the energy eigenvalues. (See Exercise 14.22.) We can write

Ego=Eq+ 7 (18.1-6)

where Epg is the Born—-Oppenheimer energy.

The variables can be separated in Eq. (18.1-5) by transforming to a coordinate
system that is called confocal polar elliptical coordinates. We will not discuss the
solution, but will present some facts about the ground state and first excited state, We
call the energies and orbitals of these states the “exact Born—Oppenheimer” energies
and orbitals. They contain no approximations other than the Born-Oppenheimer
approximation.

Figure 18.3 shows the Born-Oppenheimer energy as a function of R for the two
states. The lower curve has a minimum at R = 1.06 x 107" m = 106 pm. This value
of R is denoted by R, and is called the equilibrium internuclear distance. We consider
the molecule to be chemically bonded in the ground state with a bond order of 1/2,
since there is one shared electron. For large values of R the energy approaches a
constant value. The difference in energy between this constant value and the value of
the energy at R = R, is denoted by D, and is called the dissociation energy of the
molecule. For the H, " ion, D, is equal to 2.8 eV. The first excited state has an energy
that decreases monotonically as R increases. If the molecule is in the first excited state it
will dissociate, forming a hydrogen atom and an H* ion.

Molecular Orbitals

The eigenfunctions of the Hamiltonian of Eq. (18.1-5) are one-electron wave functions
that correspond to electronic motion around both nuclei. They are molecular orbitals.
Figure 18.4 shows qualitatively the orbital regions for the ground state and first excited
state. There is some similarity between the ground-state orbital region and that of the 1s
orbital region for the hydrogen atom and between the orbital region of the first excited
state and that of the 2p, orbital of the hydrogen atom. If the mathematical limit is taken
as R approaches zero, a hypothetical single atom called the united atom is obtained.
The united atom for H,* is the Het ion with a single electron and Z = 2. In this limit

2DR. Bates, K. Ledsham and A. L. Stewart, Phil. Trans. Roy. Soc. A246, 215 (1963).
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6_
4
T 2] First excited state
]
3 .
w o .
—
—24
Ground state
™ RA0-10 m—

Figure 18.3 The Born—Oppenheimer Energy of the Ground State and First Excited State of
the Hydrogen Molecule lon as a Function of Internuclear Distance. This figure shows the
results of solving the Schrodinger equation repeatedly for different internuclear distances in the
Born—-Oppenheimer approximation and then drawing a smooth curve through the energy eigen-
values as a function of internuclear distance. Both the ground state and the first excited state are
shown,

the ground-state molecular orbital turns into the united-atom 1s He* orbital, and the
first excited-state molecular orbital turns into the united-atom 2p, Het orbital.

The ground-state orbital has no nodes except at infinite distance from the nuclei,
while the first excited-state orbital has a nodal surface between the nuclei. A wave
function with more nodes generally corresponds to a higher energy than one with fewer
nodes. A molecular orbital without a nodal surface between the nuclei generally
corresponds to an electronic energy with a minimum value as a function of R and it
is called a bonding molecular orbital. An orbital with a nodal surface between the
nuclei generally corresponds to an electronic energy that decreases monotonically as R
increases and is called an antibonding molecular orbital.

O
() (b)

Figure 18.4 The Orbital Regions for the Hydrogen Molecule lon (Schematic). (a) The ground
state. (b) The first excited state. These sketches show the impartant qualitative properties of
these two orbitals. The ground state corresponds to a standing wave with no nodes, and the first
excited state corresponds to a standing wave with a nodal plane between the nuclei.
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The orbital angular momentum operators £ and I:z commute with the electronic
Hamiltonian of the hydrogen atom, and energy eigenfunctions could be found that were
eigenfunctions of these two operators. The operator I? does not commute with the
electronic Hamiltonian of the H,* molecule because all directions are not equivalent
due to the two fixed nuclei. However, L, does commute with the electronic Hamiltonian
operator if the nuclear axis is chosen as the z axis. The energy eigenfunctions can be
eigenfunctions of Lz, although not necessarily of I?. The eigenvalues of L follow the
same pattern as in the atomic case:

Ly =ftimy (18.1-7)
where the quantum number m equals any integer and where / represents an energy

eigenfunction. The magnitude of m is not bounded by any quantum number / as for
atoms. For molecular orbitals, we define a nonnegative quantura number A:

A= |m| (18.1-8)

- A nonzero value of 4 corresponds to two states because m can be either positive or
) negative. Each level for A # 0 has a degeneracy equal to 2 (is “doubly degenerate”).

Atomic orbitals corresponding to / = 0 were called s orbitals, orbitals with / = |
were called p orbitals, etc. For molecular orbitals we use the following Greek-letter
designations:

Value of 4 Symbol

0 [

1 i

2 d

3 ¢
etc.

Both the ground-state orbital and the first excited-state orbital of the hydrogen
molecule ion are ¢ (sigma) orbitals.

Symmetry Properties of the Molecular Orbitals

There is an important class of operators that can commute with the Born—Oppenheimer
electronic Hamiltonian operator for a molecule and can be used to characterize the
symmetry properties of molecules and of molecular orbitals. These operators are
symmetry operators, which move points from one location to another in three-
dimensional space. Each symmetry operator is classified and named by the way it
moves a point. For each operator, there is a symmetry element, which is a point, line,
or plane with respect to which the symmetry operation is performed.

The symmetry operators that commute with the Born—-Oppenheimer Hamiltonian of a
given molecule are said to belong to the molecule. The electronic energy eigenfunctions
of the molecule can also be eigenfunctions of these operators. For diatomic molecules,
we consider several symmetry operators. The inversion operator, i, is defined to move
a point on a line through the origin of coordinates to a location that is at the same
distance from the origin as the original location. If the cartesian coordinates of the
original location are (x, y, z), the inversion operator moves the point to (—x, —y, —z).
For a general operation, we denote the final coordinates by (x', ', z’), so that for the
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inversion operator x' = —x, y' = —y, and z’' = —z. We denote the operation by the
equation

i(x,3,2) = (', ), 2') = (=x, =y, —2) (18.1-9)

The symmetry element for the inversion operator is the origin. Since there is only one
origin, there is only one inversion operator. Point symmetry operators are symmetry
operators that leave a point at its original location if that location is at the origin. The
inversion operator is an example of a point symmetry operator. The symmetry elements
of point symmetry operators always include the origin.

A reflection operator is defined to move a point along a line perpendicular to a
specified plane to a location on the other side of the plane at the same distance from the
plane as the original location. It is said to “reflect” the point through the plane, which is
the symmetry element. The reflection operator &, reflects through a horizontal plane:

oy (x,».2) =y, 2) = (x,y,—2) (18.1-10)

There is only one horizontal plane through the origin, so there is only one &), operator
among the point symmetry operators. A symmetry operator that reflects through a
vertical plane is denoted by &,. Since there are infinitely many vertical planes
containing the origin, there are infinitely many 6, operators amorg the point symmetry
operators. It is convenient to attach subscripts or other labels to distinguish them from
each other,

*Exercise 18.1
Find the coordinates of the points resulting from the operations:

a. i(1,2,3)

b Gk =2,=2)

¢ d,,(7, —6,3) where &vyz is the reflection operator that reflects through the yz plane.

Rotation operators cause a point to move as it would if it were part of a rigid body
rotating about a specified axis, which is the symmetry element. The point moves around
a circle that is centered on the axis of rotation and perpendicular to it. By convention,
all rotations are counterclockwise when viewed from the end of the rotation axis that is
designated as the positive end. There are infinitely many lines that pass through the
origin, and for each rotation axis there can be rotations by infinitely many different
angles. We consider only rotation operators that produce a full rotation (360°) when
applied an integral number of times. A rotation operator that produces one full rotation
when applied » times is denoted by C,. It is convenient to add subscripts to denote the
axis. For example, the C,, operator rotates by 90° about the z axis, and its effect on a
point at (x, y, z) is

Coeliy,2) = (&', 2) = (=p,x,2) (18.1-11)

Figure 18.5 shows the effect of the operators i, ay, and 6‘42 on a point in the first octant.

*Exercise 18.2
Find the following locations:

a. Cy (1,2, 3) (the axis of rotation is the x axis).
b. C;,(1, 1, 1) (the axis of rotation is the y axis).
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Intersection
of path with
x—y plane

OLP = (x,),—2)

Figure 18.5 The Effect of the Symmetry Operators i, g, and C}z. These mathematical
operators move a point in three-dimensional space in ways defined in the text.

In addition to the above operators there is the identity operator, which does nothing. It
is denoted by E. The letter E is used because it is the first letter of the German word
“Einheit,” meaning “unity.” '

E@,y,2) = (x,,2) (18.1-12)

The Operation of Symmetry Operators on Functions

Ordinary mathematical operators operate on functions, not on isolated points. We define
a mode of operation so that symmetry operators also operate on functions. Let f(x, y, z)
be some function of the coordinates x, y, and z, and let O be some symmetry operator
that carries a point at (x, y, z) to a location (x', ', z'):

Ox,y,2) = ',y 2) (18.1-13)

When the operator 0 operates on the function /it produces a new function g, defined to
be the function that has the same value at the location (x', ', z') that the function / has
at the location (x, y, z). If

Of(x,y,2) = g(x,»,2) (18.1-14)
then
gy, z) =f(x,y.2) (18,1:15)

A function can be an eigenfunction of a symmetry operator. The only eigenvalues that
occur are +1 and —1.

EXAMPLE 18.1

Show that the hydrogenhkc ls orbltal is an e:genfunctmn of the mvc,;saon opcrator i, Find
the elgcuvalue
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Original
Nucleus A ¢ position

/ of the

electron
y

® Nucleus B

X" Position
of the
electron
after the
inversion
operation

Figure 18.6 The Effect of the Symme-
try Operator / on the electron of the
H. " lon. This symmetry operator moves
the electron so that its distance from
nucleus B is the same as its original
distance from nucleus A.

18 The Electronic States of Molecules

Solution

1/7 3/2
!l'jls: _(_) e—era

m\a

where Z is the number of protons in the nucleus, a is the Bohr radius, and r is the distance
from the nucleus:

r=0+y7 +2)"”

When x is replaced by —x, y is replaced by —y, and z is replaced by —z, the value of r is
unchanged so that

?V’Jl.r il l11’15

The s, function is an eigenfunction of the inversion operator with eigenvalue 1.

Exercise 18.3
*a. Determine the spherical polar coordinates of iP and 6P if P represents a point whose
location is (r, 8, ¢).
b. Show that the y,, hydrogenlike orbital is an eigenfunction of the &, operator with
eigenvalue —1.

The equilibrium nuclear conformations of many molecules are symmetrical. Our first
use of symmetry operators is to apply them to the nuclei of a molecule in their
equilibrium conformation. Our second use is to apply them to the electrons of the
molecule or to an orbital function, leaving the nuclei fixed in their equilibrium
positions. If a symmetry operator moves every nucleus to a location previously
occupied by a nucleus of the same kind (same isotope of the seme element) it belongs
to the molecule. A symmetry operator that belongs to the molecule will not change the
value of the potential energy when it is applied to the electrons with the nuclei fixed. It
will bring every electron to a point in which it either is at the same distance from each
nucleus as it was in its original position or is at the same distance from a different
nucleus of the same kind. The operation of the inversion operator on the electron of an
H,™ molecule ion is illustrated in Figure 18.6. This motion brings the electron to the
same distance from nucleus A as it originally was from nucleus B and vice versa, and
thus does not change the potential energy. Any symmetry operator that belongs to
a molecule will not change the potential energy when it is applied to its electrons and
will commute with the Born—Oppenheimer electronic Hamiltonian operator of that
molecule.

Exercise 18.4
Show that the symmetry operators /, Ty, é‘,,z, and é'h belong to the H,* molecule, where 2 is any
positive integer and where « stands for any axis in the x-y plane. Show also that if these operators
are applied to the electron position with fixed nuclei, the potential energy is unchanged.

A symmetry operator can operate on electronic wave functions as defined in Eq.
(18.1-15), and electronic wave functions can be eigenfunctions of symmetry operators
that commute with the electronic Hamiltonian operator. The ground-state electronic
orbital of H,* is an eigenfunction of each of the symmetry operators in Exercise 18.4,
and each eigenvalue is equal to +1. The orbital of the first excited state is also an
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eigenfunction of these operators, but the eigenvalues of 7, 0y, and &'zc, are equal to —1.
An eigenfunction having an eigenvalue of i equal to +1 is denoted by a subscript g
(from the German gerade, meaning “even”) and an eigenvalue of i equal to —1 is
denoted by a subscript u (from the German wngerade, meaning “odd”). An eigenvalue
of 6, equal to —1 is denoted by an asterisk (*). Orbitals with asterisks are antibonding
since they have a nodal plane through the origin perpendicular to the bond axis. No
superscript or subscript is used to denote an eigenvalue of 6}, equal to +1, correspond-
ing to a bonding orbital. The sigma orbitals are generally numbered from the lowest to
the highest orbital energy, so the ground-state orbital of the hydrogen molecule ion is
denoted by L[/,c,! and the first excited state is denoted by V..

18.2 LCAO-MOs—Molecular Orbitals That Are Linear
Combinations of Atomic Orbitals

The exact Born—Oppenheimer solutions to the Schrddinger equation for the hydrogen
molecule ion are expressed in an unfamiliar coordinate system, and we did not
explicitly display them. It will be convenient to have some easily expressed approx-
imate molecular orbitals. We define molecular orbitals that are linear combinations
of atomic orbitals, abbreviated LCAO-MO. If f}, f3, f3, . . . are a set of functions, then ¢
is called a linear combination of these functions if it equals a sum of these functions
times constant coefficients:

g=cfitah+afi+: (18.2-1)

We say that the function g is expanded in terms of the set of basis functions /|, /5, .. ..
The coefficients ¢y, c;, ... are called expansion coefficients. If the linear combination
can be an exact representation of an arbitrary function obeying the same boundary
conditions as the basis set, the basis set is said to be a complete set. In Chapter 15 we
introduced the assumption that the set of all eigenfunctions of a hermitian operator is a
complete set for expansion of any function obeying the same boundary conditions as
the eigenfunctions. We will not attempt to use a complete set of functions for our
LCAO-MQOs, but will begin with a basis set consisting of two atomic orbitals centered
on two different nuclei.

LCAO-MOs for the First Two States of the H,™ Molecule lon

We seek LCAO-MO representations for the 1//1% and ., molecular orbitals. Let r, be
the distance from nucleus A to the electron, and let ry be the distance from nucleus B to
the electron. We take two hydrogenlike orbitals as our first basis set: one with r, as its
independent variable and one with ry as its independent variable. We use the
abbreviations:

Visa = Vi5(ra) (18.2-2a)

Vi = ¥ 5(rp) (18.2-2b)
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The orbital y,;, has its orbital region centered at location A and the orbital ¥, has its
orbital region centered at location B. We now form molecular orbitals that are linear
combinations of the basis functions:

Unmo = Callisa + Ca¥isn (18.2-3)

The number of possible independent linear combinations is always equal to the number
of independent basis functions. We have two basis functions so it is possible to make
two independent linear combinations. We seek two molecular orbitals that are
approximations to the ground state orbital and the first excited state orbital of the
H,™ ion.

There are at least two ways to find the appropriate values of ¢, and ¢y for the ground
state. One procedure is to regard Yy as a variational trial function and to minimize the
variational energy as a function of ¢, and cz. We do not present this calculation, but the
result is that the variational energy is minimized when ¢, = cg. An approximation to
the first excited state is obtained when the energy has its maximum value, and this
corresponds to ¢ = —c.> Another procedure is to choose values of ¢, and cg so that
the approximate orbital is an eigenfunction of the same symmetry operators as the exact
orbitals. The ground-state exact Born—-Oppenheimer orbital is an eigenfunction of the
inversion operator with eigenvalue +1. In order to obtain an LCAO-MQ with this
eigenvalue, we choose

CAch (182-4)

Since the origin is midway between the two nuclei, inversion from any point leads to a
point that is the same distance from nucleus B that the original point was from nucleus
A and vice versa. If ¢, = cp each term in the linear combination becomes equal to the
original value of the other term, so that the molecular orbital is an eigenfunction of the
inversion operator with eigenvalue 1 if ¢, = cj.

In order to obtain a molecular orbital with the same symmetry properties as the exact
Born-Oppenheimer orbital of the first excited state, we must choose

CA = _CB (182'5)

The symmetry properties are sufficiently fundamental that choosing the molecular
orbitals to be their eigenfunctions leads to the same LCAQ-MOs as the variation
procedure. These LCAO-MOs are eigenfunctions of the other symmetry operators that
belong to the H,™ molecule.

Exercise 18.5

a. Argue that ¢, = cp leads to an eigenvalue of +1 for the &, operator and for the ézu operator,
where é‘m is a rotation operator whose symmetry element lies somewhere in the x—v plane.

b. Argue that ¢, = —cy leads to an eigenvalue of ~1 for the &, operator and for the CH':u
operator.

We introduce the symbols for our two LCAO-MOs:
u‘jrr!l.r = CanA + {1'/1513] (18.2-6)
Vours = Culthia — V58] (18.2-7)

31, C. Davis, Jr., Advanced Physical Chemistry, The Ronald Press, New York, 1965, p. 404.
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where the 1s subscripts indicate the atomic orbitals from which the LCAO-MOs were
constructed. The value of the constants C, and C, can be chosen to normalize the
molecular orbitals.

Figure 18.7 schematically shows the orbital regions for the oyls LCAO — MO and
the ¢}ls LCAO-MO, as well as the orbital regions for the 1s atomic orbitals. The
intersection of the two atomic orbital regions is called the overlap region. This is the
only region where both atomic orbitals differ significantly from zero. For the g, 1s
orbital the two atomic orbitals combine with the same sign in the overlap region,
producing an orbital region characteristic of a bonding orbital with no nodal surfaces.
For the o} ls orbital the atomic orbitals combine with opposite signs in the overlap
region, canceling to produce a nodal surface between the nuclei, characteristic of an
antibonding orbital. This addition and cancellation are similar to constructive and
destructive interference of waves, but should not be interpreted as actual interference,

Figure 18.8 shows the electronic energy for each of these LCAO molecular orbitals
along with the exact Born-Oppenheimer energies. The value of D, for the g, 1s orbital
is equal to 1.76 eV, with a value of R, equal to 1.32 x 107 '°m. As we expect from the
variational theorem, the approximate energies lie above the exact energies for all values
of R. The energies can be improved by “scaling” the atomic orbitals: that is, by
replacing the atomic number Z in the orbital exponent by a variable parameter.

LCAO-MOs can be constructed that are linear combinations of more than two atomic
orbitals. For example, for the ground state of the hydrogen molecule ion, we could write

Ymo = Cisa¥isa T CisaVism T Cosalasa

(18.2-8)
+ Cap¥ap + Cop.alapa T Copa¥ay.n

When the variational energy is minimized with respect to the ¢ coefficients, a better
(lower) value is obtained than with the o,1s orbital. However, we will use linear
combinations of only two atomic orbitals as much as possible, since we will content
ourselves with qualitative description rather than quantitative calculation. The 2p, and
2p, atomic orbitals are not included in Eq. (18.2-8) because they have different

24

Overlap
region

Gg1s oy ls

(a) (b) (©

Figure 18.7 The Orbital Region for the ag1s and ¢;1s LCAO Molecular Orbitals. (a) The
overlapping orbital regions of the 1sA and 138 atomic orbitals. (b) The orbital region of the agls
LCAQ-MO. (c) The orbital Region of the a;;1s LCAO-MQ. The orbital regions of the LCAO molecular
orbitals have the same general features as the “exact” Born Oppenheimer orbitals whose orbital
regions were depicted in Figure 18.4.
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Figure 18.8 The Orbital Energies for the o;1s and o;1s LCAO Molecular Orbitals. This
diagram shows qualitatively how the Born—Oppenheimer energies of the LCAO molecular orbitals
compare with the Born Oppenheimer energies of the “exact” orbitals. The approximate orbital
energies must lie above the corresponding exact energies for all internuclear distances.

symmetry about the bond axis than does the exact ground-state orbital. If they were
included with nonzero coefficients, the LCAO-MO would not te an eigenfunction of
the same symmetry operators as the exact orbitals.

Exercise 18.6
Argue that the 2p, and 2p, atomic orbitals are cigenfunctions of the 6'2_, operator with eigenvalue
—1, while the 2p, orbital is an eigenfunction with eigenvalue +1. Argue that a linear combination
of all three of these orbitals is not an eigenfunction of the C,, operator.

LCAO-MOs for Additional Excited States of H,*

The wave functions for additional excited states of H,™ are approximated by LCAO-
MOs using higher-energy hydrogenlike orbitals. For example, two linear combinations
of 25 orbitals that are eigenfunctions of the appropriate symmetry operators are

l#’last = cg[‘/’Zs(rA) + '1”’25(?‘3)] == CS[IWDZsA + wzsg] (]82-9)
l1’0125 = Cu[wlg(rA) - lnbzs(rB)] W Cu[l#,/,'zsA = wsz] (l 82-10)

The g,2s orbital is a bonding orbital, and the o} 2s orbital is an antibonding orbital. The
0,25 orbital energy is higher than that of the o}ls antibonding orbital since the
molecule dissociates from the ¢,2s state to a hydrogen nucleus and a hydrogen atom in
the 2s state, as shown schematically in Figure 18.9.

Exercise 18.7

Draw sketches of the orbital regions for the functions in Eq. (18.2-9) and (18.2-10). Argue that
the designations ¢, and ¢}, are correct.
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Figure 18.9 Dissociation of a Hydrogen Molecule lon in the ¢,1s and ¢,2s States. (a) The
orbital regions before and after dissociation. (b) The energy levels of the LCAO molecular
orbitals as a function of internuclear distance. If a molecule in the o,2s state dissociates, an
atom in a 2s state and a bare nucleus result. A molecule in the ¢ 1s state dissociates to form an

atom in the 1s state and a bare nucleus.

Normalization of the LCAO-MOs

To normalize the ggls orbital we write

I= IC312J(¢A+¢B)*(wA+wB)d3r (18.2-11)

where we abbreviate the 1sA and 1sB subscripts by A and B. The 1s atomic orbitals are
real functions, so the complex conjugate symbol can be omitted. We will choose the

normalization constant Cg to be real so that

l=6 J(wi + 20 + ¥p) dr (18.2-12)

The atomic orbitals , and 5 are normalized, so that the first term and the last term in
the integral will each yield unity when the integration is done. The second term gives an

integral that is denoted by S:

J%dfsaﬁr il (18.2-13)
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Figure 18.10 The Hydrogen Molecule
System. This system is analogous to
the helium in having two electrons. Our
treatment of it is similar to the treatment
of the helium atom, except for using
molecular orbitals instead of atomic
orbitals.

18.3

The integral S is called the overlap integral because the major contribution to its
integrand comes from the overlap region. In other regions at least one of the factors in
the integrand is small. Since the 1s orbitals are positive everywhere the overlap integral
for two 1s orbitals is positive. Its value depends on R, approaching zero if the two nuclei
are very far apart and approaching unity when R approaches zero since it then
approaches a normalization integral. Similar overlap integrals can be defined for
other pairs of atomic orbitals, and it is convenient to attach two subscripts to the
symbol S to indicate which two orbitals are involved. The overlap integral in Eq. (18.2-
13) would be denoted as Sy, ;. For any normalized atomic orbitals, the values of
overlap integrals must lie between —1 and +1, and approach zero as R is made large. If
we had an overlap integral between a s and a 2p, orbital on different nuclei, it would
approach zero as the nuclei approach each other, because it would approach an
othogonality integral instead of a normalization integral.
We now have

1=Cl1+25+1) (18.2-14)

so that the normalized LCAO-MO is

1
Vo, 1s = m(% + ¥p) (18.2-15)

Exercise 18.8
Show that the normalization constant for the ¢} 1s LCAO-MO is

(18.2-16)

Homonuclear Diatomic Molecules

Homonuclear diatomic molecules have two nuclei of the same kind. We discuss the
homonuclear diatomic molecules of the first and second rows of the periodic table, and
will base our discussion on the H,* molecular orbitals in much the same way as we
based our discussion of multielectron atoms on the hydrogen atom atomic orbitals in
Chapters 16 and 17.

The Hydrogen Molecule

Figure 18.10 shows the hydrogen molecule, consisting of two nuclei at locations A and
B and two electrons at locations 1 and 2. With its two electrons the hydrogen molecule
bears the same relationship to the hydrogen molecule ion that the helium atom does to
the hydrogen atom, and our treatment of it resembles that of the helium atom. We apply
the Born—Oppenheimer approximation, assuming the nuclei to be fixed on the z axis




